

Visualizing Graph Algorithms Developer Guide

Welcome:..2
What You Need:.. 3
If You Don’t Have Visual Studio:.. 4
Get Up-To-Date Program File:.. 7
Running / Launching a program... 8
Variable References:.. 12
Graph Design Form Enhancements:.. 13
Adding An Algorithm:.. 15

Algorithm Selection Form:.. 15
Algorithm Running Form:..18
Using the Table:.. 19
Using the Feedback Box:..20
Using Drawing Functions:...21
Using Your Own Drawing Functions:.. 22
New Algorithm.. 23

Rewind Button Implementation:... 24

- 1 -

Welcome:
 I would first like to thank you for taking an interest in my project, and for having the interest to
expand it. I hope this developer guide helps you better understand my code and makes it easier to add
on or enhance it.

Note: For some of you, a lot of the below information may not be as helpful as it would be for
others. However, I do ask everyone to read the section: Get Up To Date Program found on page 7. If
you don’t read this section, you may run into an issue with the file. Also if you already have Visual
Studio 2022, make sure you have the .NET Desktop Development workload extension downloaded for
it. Hope you enjoy my program.

- 2 -

What You Need:
● Computer or Laptop
● Visual Studio 2022 (older versions may work, but unsure)
● Updated project zip file (instructions below).
● Understanding of what a graph is (Please see user manual if you don’t know)

- 3 -

If You Don’t Have Visual Studio:
● To reiterate, you will need a computer with Visual Studio installed. (I used version

2022, you may be able to use 2019 or 2017, it may prompt you to update the file, which
it will handle)

● To download Visual Studio 2022, you can search for Visual Studio 2022 download, and
it should be the first link. Or use this URL:
https://visualstudio.microsoft.com/downloads/

● Next, you want to download the Community Free Version shown below:

● You can download it anywhere on your computer; it doesn’t really matter.
● Once downloaded, you need to open the file. You may be prompted with, Would you

like Visual Studios to make changes, Click allow.
○ Clicking “Allow” is safe, and this doesn’t give Visual Studio control of your

system. It will simply allow Visual Studio to use the resources it needs to
execute algorithms and animations.

○ Without this permission, the application won’t be able to run.
● Next, we need to follow the prompts as needed to set up. The first is shown below, and

you want to click Continue.
○ Please note this could take several minutes, maybe even longer depending on

network speed to download.

- 4 -

https://visualstudio.microsoft.com/downloads/

● After that, you should see the screen below:

● The screen below will then show up. You need to make sure you select .NET desktop

development as selected and shown below.

- 5 -

● Once you do that, you want to click install in the bottom right corner. This should then

bring you to the screen below:

● Once you are done installing, you should have the following screen. NOTE: Nothing
more needs to be done after this step in regards to downloading Visual Studio; the
rest is optional for now. From here, you can choose to launch, log in, and create an
account, or skip. You can also choose what theme you’d like, such as light or dark
mode (Note you may need to do this later on as well, but I am not 100% sure).

- 6 -

Get Up-To-Date Program File:
● Now you will need the most recent version of my project, which can be downloaded

from my website under the project section, and my last blog post as well. Here is the
URL: https://compsci04.snc.edu/cs460/2025/johnolson/website/project.html

● Then you want to click the most recent uploaded file (which will be shown) and click
the download button. You may put this file anywhere. NOTE: DO NOT Extract the
file yet, just download and follow further steps.

● Once downloaded, you will need to right-click on the file, navigate to properties as
shown below, or click on the file and hit ALT+Enter:

- 7 -

https://compsci04.snc.edu/cs460/2025/johnolson/website/project.html

● Then you will be brought to a similar screen shown below. If you look down at the
bottom under securities (shown in the red circle), if you have a similar message as I do
below, you’re going to want to select Unblock, then Ok or Apply.

● Now you can unzip or extract the file. If you click on the file, it should say in the bar to

extract all, or when you right-clicked on it earlier, it was right under the share.
● Now you are ready for the next step

Running / Launching a program

● DISCLAIMER: The design, graph form, flickers, or may look glitchy. This is because
it is redrawing everything to the screen after any change. (I apologize, though if I had
more time, I would have a more efficient and less flickering method.)

- 8 -

● Now you want to navigate to where you saved and extracted your file and open it. You
should see a screen similar to what is below:

● Now you need to open up the Final Project.sln (.sin may not display; it will be

Microsoft Visual Studio Solution (under Type)), which is highlighted on the above
screen.

● Below screen may appear. Please select Visual Studio 2022

- 9 -

- 10 -

● You should come to a screen similar shown either above or below. On the far right-hand
side of the screen, you should see the FinalProject section under the Solution Explorer.

● Once you do that you should be met with the below screen. The only files relevant are
the AlgorithmRunning.cs, AlgorithmSelection.cs, and GraphDesign.cs.

● If you double-click on them, you should see the design screens pop up. Similar to the

image below. From there, click control + alt + 0 to open the code window. Now you can
begin!!!

- 11 -

Variable References:
● Below are the important variables you need to know.

- 12 -

Graph Design Form Enhancements:
● I would really like to see the drawing to be enhanced in this form, as it is currently

terribly inefficient. Right now this form uses the below painting method:

● This is how the painting is called. Anytime you add a vertex, edge, or delete / move

something, it triggers a change and an Invalidate(). Everytime Invalidate() is called, and
a change occurs, it calls this OnPaint function which redraws everything all at once,
regardless if it was changed or not.

● I want this form to paint, like in the Algorithm Running form. Below I have 3 screen
shots and I will do my best to explain this.

● So how I paint in form 3 is using what's called a bitmap. A bitmap you can think of as a
canvas. You put what you want onto the canvas, then once you are ready you blast it to
the screen. Therefore, the bit map only gets updated if there's a change, and it only adds
what’s changed.

● In order to use the bitmap you must do what is shown below. You need to use the lock
variable, because using, is a protected action. If two processes try to use it at the same
time, the program will break. To prevent this, you want to lock it. This ensures, only
one process can use it at a time.

● Once you are in the using property, you just need to do g. and whatever you’d want to

paint. Weather that is an ellipse or circle, or edge etc. The graphics g is mapped to the
bitmap. So anything added into it will reflect into the bitmap.

- 13 -

● This is the OnPaint function used in the Running Algorithms form. I also lock this as
you don’t want two things interacting with the bitmap at the same time. But the bitmap
would be null if there wasn’t a change, thus it wouldn't blast it to the screen.

● This shouldn’t need to be done much. You can look at Algorithm Running form to

really see how the painting works, but all you’d need to do is call the functions that
now paint, then put it into the bitmap vs the screen graphics, then update the OnPaint
function, to just have the screen graphics draw the bitmap image onto the screen.

- 14 -

Adding An Algorithm:
● If you are looking to expand the program, by adding on an algorithm, I will detail the

steps how to do so, to the best of my ability. You will need to make minor adjustments
in the Algorithm Selection form, and Algorithm Running, is where the new algorithm
will go.

 Algorithm Selection Form:
○ You first need to add a button into the AlgorithmSelection.cs [Design] form. To

do so, you need to make sure you are on the form design page shown below:

○ Then you want to click view in the top left of the screen, and click on Toolbox

shown below or do control + alt + x.

- 15 -

○ Then you want to drag and drop a button from the Toolbox (shown below) and
drag it to the menu bar / strip. (This is the blue line at the top of the form, where
all the other buttons are.

○ Once you drop the button into the menu bar, then you might want to rearrange

things on the bar to make it more visible. After that you want to click on the
button, then on the bottom right of the screen there should be a properties
window (shown below). You want to make sure you set the BackColor and
Cursor to be the same as below. You also want to change the text to be the name
of the algorithm, and then under Design Name, you should make this a useful
name as this is the id for the button.

- 16 -

○ Once you have that done, you want to click on the lightning bolt, which will
bring you to the events tab shown below. You want to scroll down to where you
find Action: Click. Then you want to click once in the blank space to the right
of it. Then you want to name the button click function. Once you type out the
name, click enter and it will generate the function for you.

○ Then you want to copy the below function, but obviously change it for your

needs. The function call is a unique id integer for the function. DFS is 1,
Minimum Spanning Tree is 2, and Dijkstra’s is 3. You must set functionCall to
an integer that isn’t 1,2 or 3. From there you want to change the text from
saying "Dijkstra's is selected" (in the below screenshot), to _____ algorithm is
selected, so that the user knows which algorithm is being selected.

○ After that, you need to modify the RunAlgorithm function shown below. I

recommend you copy the else if (functionCall == 3) especially if the function
requires it to be weighted. However, I would recommend altering this function
even more. I would just do an if(functionCall ==0), then else be what is inside
the else if (functionCall == 1). I would then check the requirements, like if it
needs to be weighted in the on button click functions. Not in the Run Algorithm
function. This would clean up this function.

- 17 -

○ After you add the button, create an on click function for that button, and set the
functionCall variable to having its own number, like 4 for example, and you
have altered the RunAlgorithm function, you are now ready to write the
algorithm.

 Algorithm Running Form:
○ Now it is time to start writing your desired algorithm. You can write it anywhere

you want, but I tried my best to organize my code, so it is easier to find. I
recommend either adding the new algorithm functions at the very bottom, or
just after the Dijkstra’s functions and before the drawing / animation functions.

○ You must first create a global book for your algorithm, on line 88, like I have
for Dijkstras and DFS. It should be defaulted to false.

○ Then you must adjust the StartBTN_Click function found on line 249, and
shown below.

○ I recommend copying the else if statement, and changing the inner if statement,

to be !____ where blank is the bool name you gave. Then you need to change
the message show box to indicate the appropriate algorithm. Lastly you need to
name the starting function. It should start____ where blank is the algorithm
name.

○ Below are the two other starting functions. I will tell you the bare minimum
you will need is the startDFS function. It must be an async void function, and
you must have the algorithm call as await Task.Run(() => Run_____startVertex
- 1)); where the blank is the algorithm. This way we keep consistency. Start
Dijkstra’s can be found on line 475, and startDFS can be found on line 395. The
only difference between the two is that Dijkstra needed to have the table and
feedback box. I will discuss this portion in a moment.

- 18 -

○ Now it’s time to write your algorithm. If your algorithm needs a table and/or

feedback box, then you need to follow these steps.
 Using the Table:

○ If you need to use the table, you need to make sure you edit the below if
statement. Note if you don’t need the feedback box, then make an inner loop for
if(functionCall == 3) then InitializeFeedbackBox();. Once you do that, then you
need to make sure you add the SetupTable() function call into the start function
of your algorithm like I did in the above picture on the right.

○ After this, you may need to edit the SetupTable function below on line 841. If

the Column names need to be changed, then this is where you need to do it.
However, in the else statement, I’d ask you to make an if(functionCall ==3)
then you do the exact things I have, else if (functionCall == __) where the black
is the number you assigned the algorithm.

- 19 -

C/C++

○ Now if you end up using the drawing functions please read the below

information. If not you will need to write your own update functions. You can
use the UpdateTableDone and UpdateTableUnvisited as a guide to writing your
own. However, you need to use the below code. (Note: the ___ is your function
name you decide on and the *** is any parameters you will need.)

if (table.InvokeRequired)
table.Invoke(new MethodInvoker(() => _____(*******)));

else
{

 Using the Feedback Box:
○ If you need to use the feedback box, then you need to follow the same first step

and make sure you edit the below if statement in the constructor. Note if you
don’t need the table, then make an inner loop for if(functionCall == 3) then
InitializeTableControl(); SetupTable();.

- 20 -

○ Now all you need to do is to start adding feedback wherever you want into your

algorithm. To do so all you need to do is call AddFeedback() then whatever you
want your feedback to be you put inside as shown below. If you want to use any
variables in your feedback you need to use the $ before the string quotes. Then
when you want to use a variable or do any math, you use {}. You can also print
out the feedback as a string, and you just use the quotes “”. You may also call a
function inside of it, so long as that function returns a string. Note: I would
recommend putting this information when you are updating or checking
anything. Think of this as you are in the room with the user, and needing to
explain each step of the algorithm.

 Using Drawing Functions:

○ If you are using the drawing functions, then it is important to note that you may
need to adjust it to fit your function, like I did for Dijkstra’s. However, if you
are using the drawing functions, and the table you need to update the section of
code at the beginning. However, if you are using a different update table
function then this is where you need to include it:

○ For reference, this is at the top of the drawing functions (before you lock or use

the using). If you are using these, then you need to add an || in the if statement to
include your algorithm. If you are using your own, then you need to make sure
you do another if(functionCall == ___) where the black is what number you
assigned the function to be.

- 21 -

○ It is important to note that you may need to consider other types of edges, like
cross edges and stuff, so here is information that is important to know when
creating your own drawing functions.

 Using Your Own Drawing Functions:
○ So first and foremost, you must use the lock and using shown below:

○ The green comments will explain exactly why you need it, but it is essential.
○ You will need to consider drawing a directed edge, so you can literally copy and

paste the below code. Note: then unvisitedEdge, is the pen variable at the top of
the program.

○ It is very important to note that you must paint all edges, then both vertices

because otherwise, the edge will be painted on top of the vertices and it looks
very bad. If you don’t need to change an edge, then you can just paint the
specific vertex.

○ If you do need to repaint a vertex make sure you use the below code. Note: the
to or from is the specific vertex number you are repainting. The reason why we
add one in the beginning, is because the vertices are 0 based, and we want them

- 22 -

to be visually accurate. () based meaning visually vertex one is 0 in code, hence
we need to add one.

○ You must also have the below code at the very bottom of your drawing

function. This occurs after the lock. Invalidate will trigger the repaint, and the
sleep, is to delay the visual for the next paint, based on the speed bar.

New Algorithm

○ Now it's time to write your algorithm. There are a few key things you must
include in your algorithm. Anytime you go to paint, (usually based on a status
change), you must call the CheckPause() function after it before you do
anything else. This is for the pause button, and the fast forward button, (if you
implement it the rewind button too).

○ The only time you don’t do this, is in the case of Dijkstra’s where I wanted to
print all neighbors right away with no delays. Then I call the Tread.Sleep
afterwards, then I call the CheckPause button. That is like the only exception.
That way the user can step through every visual animation. Other than that you
are all set!!!! (unless you want to implement the rewind button which is below).

- 23 -

Rewind Button Implementation:
● For reference, the below button is the rewind button.

● Below are the two most important functions for this, however the most important is the

CheckPause().

● When you implement the rewind button, you must first change the Cursor below from

no to Hand.

- 24 -

● Then you need to click the lighting bolt, which will take you to the events. And under

Action, you should see a click shown below. The box next to the click, is where you
name your function. You click in that box, then type out what you want the name to be
like RewindBTN_Click or something, then you click enter. This will automatically
generate the function for you.

● After that you are ready to start implementing. My first version would recall the whole

algorithm from scratch, with 0 delay up to the previous step. So if you are on lets say
step 9, you run the algorithm to step 8.

● One thing you can maybe do is create some kind of stack or list of all the steps, so you
can just pop the most recent ones off the stack.

● Key Note: I would like to give you the biggest advice / information. You will need to
keep track of the vertices, as you’re going to need to repaint them. This for me was the
hardest part as you might need to repaint 2 or 3 vertices and the edges. This is hard to
do, and you need to remember, you must paint edges, then vertices.

- 25 -

	
	Welcome:
	What You Need:
	
	
	If You Don’t Have Visual Studio:
	Get Up-To-Date Program File:
	Running / Launching a program
	Variable References:
	
	
	Graph Design Form Enhancements:
	Adding An Algorithm:
	Algorithm Selection Form:
	Algorithm Running Form:
	Using the Table:
	Using the Feedback Box:
	Using Drawing Functions:
	Using Your Own Drawing Functions:
	New Algorithm

	
	Rewind Button Implementation:

